To aid in our pursuit, we exploited the CRISPR technology that provides the means to target any specific target in the genome. Specifically, we used the dCas9 based transcriptional activator to electrically activate and repress select genes of interests. Firstly, we integrated the CRISPR system with the SoxR based electro responsive promoter, optimized various components involved in the CRISPR system to make a tunable and inducible system. In this way, using CRISPR we electrically activated LasI, an autoinducer-1 (AI-1) synthase resulting in generation of AI-1, a quorum sensing mediator (Fig. 2 and 3). Later, we repurposed the CRISPR activator to simultaneously repress select genes as well. Since the electrochemical stimuli that drives the SoxS promoter also induces oxidative stress, bacterial cells activate intrinsic stress defense responses to attenuate the electrical stimuli. We used the repurposed CRISPR activator to repress the activation of oxidative stress defenses in E. coli and S. enterica, thus leading to enhanced output from the electrical stimuli responsive promoter (Fig 4). When placed in the context of the complex spatio-temporal signal gradients at the bioelectronic interface, cells with repressed oxidative stress defenses displayed more aligned responses in relation to the external signal gradients (Fig. 5). This concept of silencing certain elements in the genome in order to maintain better congruence with external environments is nature inspired and found in embryogenesis and yeast as well (Yu et al., 2008; Paulsen et al.,2011).
Overall, we expect that electrical control of transcriptional networks in cells would find many biotechnology applications such as engineered probiotic bacteria that could be programmed to respond to electric stimuli in the gut. In the longer term, similar to how DNA based vaccines are being electroporated into the human body to fight Covid-19, we may expect that electrogenetic promoter circuits will be inserted into human cells to open a new modality of bioelectronic signaling.
Works Cited
Berényi, A. et al. (2012) ‘Closed-loop control of epilepsy by transcranial electrical stimulation’, Science, 337(6095), pp. 735–737. doi: 10.1126/science.1223154.
Bhokisham, N. et al. 'A redox-based electrogenetic CRISPR system to connect with and control biological information networks', Nature Communications. Nature Publishing Group, 11, 2427 (2020). https://doi.org/10.1038/s41467-020-16249-x
Kovatchev, B. P. et al. (2009) ‘In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes’, Journal of Diabetes Science and Technology, 3(1), pp. 44–55. doi: 10.1177/193229680900300106.
Krawczyk, K. et al. (2020) ‘Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice’, Science, 368(6494), pp. 993–1001. doi: 10.1126/science.aau7187.
Paulsen, M. et al. (2011) ‘Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development’, Proceedings of the National Academy of Sciences of the United States of America, 108(25), pp. 10202–10207. doi: 10.1073/pnas.1100179108.
Tschirhart, T. et al. (2017) ‘Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling’, Nature Communications. Nature Publishing Group, 8(1), p. 14030. doi: 10.1038/ncomms14030.
Weber, W. et al. (2008) ‘A synthetic mammalian electro-genetic transcription circuit’, Nucleic Acids Research, 37(4), pp. e33–e33. doi: 10.1093/nar/gkp014.
Yu, R. C. et al. (2008) ‘Negative feedback that improves information transmission in yeast signalling’, Nature, 456(7223), pp. 755–761. doi: 10.1038/nature07513.
Wow! ...I mean ...WOW!!!
ReplyDeleteyep
Delete